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We calculate the interactions between pairs of phonon beams in liquid 4He, in particular l-l, h-l, and h-h
beams, where l and h stand for low- and high-energy phonons, respectively. This entails calculating the rate of
four-phonon process �4pp� scattering for the whole phonon momentum range in liquid helium taking into
account the momentum distribution of the phonons in the beams. The attenuation coefficient of one beam due
to the other is calculated for each case, and the results are compared with experimental data. We find broad
quantitative agreement that confirms the 4pp scattering theory.
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I. INTRODUCTION

Most of the properties of liquid 4He can be understood
within the excitation picture introduced by Landau1 �see also
Ref. 2�. In this model, the liquid helium is considered to be
excitations from a ground state, which acts as a “vacuum”
state for the excitations. The excitations are phonons and
rotons and, as they are long-lived excitations, they can be
treated as quasiparticles that move through the vacuum state.
This model gives a good description of the thermodynamic
properties of liquid helium, such as the heat capacity. Also,
as the excitations are identified with the normal fluid, it also
explains the underlying basis for the two-fluid model,1,3

which so well describes the hydrodynamics of superfluid he-
lium.

However there are interactions between the quasiparticles,
so they scatter each other, and this gives the quasiparticles a
finite lifetime. This lifetime usually, but not always,4 depends
on the ambient density of the quasiparticles. The roton life-
time can be directly seen in neutron-scattering experiments
as a broadening of the linewidth with increasing
temperature.5,6 The quasiparticle scattering also explains
such bulk properties as the normal fluid viscosity7,8 and
sound attenuation.9

Theories of scattering were initially applied to explain
these bulk properties, which meant considering the interac-
tion of a typical quasiparticle with an isotropic distribution of
quasiparticles in thermodynamic equilibrium. It was the fail-
ure to explain sound attenuation that led to the suggestion
that the dispersion curve was not linear at low momenta but
that phonon energy increased faster than linearly with
momentum.9

The theory of interactions between phonons showed that
the scattering is strongly dependent on the angle between the
two incoming quasiparticles, as well as on their momenta. So
when phonon-phonon interactions are evaluated in isotropic
liquid helium, all the details of the angular dependence are
lost in the averaging over all angles. This means that the
theories of scattering are not confirmed in detail.

In order to test the theories of phonon-phonon interaction,
one would need to create a beam of well-defined phonons

and measure their interaction with a second beam of well-
defined phonons, in much the same way that high-energy
particle experiments are conducted. However the phonons in
a beam may or may not be interacting, so the situation may
not be as simple as considering beams of independent par-
ticles. The parameters of a phonon beam change with time as
the beam propagates in the superfluid helium. If the interac-
tions between the phonons, within a beam, are so strong that
the relaxation time of phonons is much smaller than the typi-
cal time of variation of the parameters in the beam, then
these phonons can be described by a local equilibrium dis-
tribution function in space and time. This function describes
an anisotropic phonon system, and it will be essentially dif-
ferent to that for the isotropic distribution. It turns out that
one can still have a beam with reasonably well-defined nar-
row angle, even when the phonons in the beam are interact-
ing rapidly. A calculation of the scattering between two
beams must take into account the spectrum of phonon ener-
gies in the beams as well as the angle between the beams.

Recently measurements of the scattering between beams
of different phonons had been published.10 The experiments
considered three different types of scattering, �i� scattering
between two beams of low-energy phonons, �ii� scattering
between low-energy and high-energy phonons, and �iii� scat-
tering between two beams of high-energy phonons. These
will be referred to as l-l, h-l, and h-h scatterings, respec-
tively. Interactions between these two groups of phonons is a
natural choice as groups of low- and high-energy phonons
form in the liquid 4He due to the shape of the dispersion
curve.11–13 Low-energy phonons �l phonons� are defined by
their momentum p being less than pc, and high-energy
phonons �h phonons� are defined by p� pc, where pc is the
momentum where cpc=�, where c is the velocity of sound as
p→0 and � is the phonon energy. At saturated vapor pres-
sure, at T�1 K, p̃c=cpc /kB=10 K.

The experimental technique of Ref. 10 allows two phonon
beams to scatter at different angles to each other. These dif-
ferent angles, between the phonon beams in experiment,
were realized by using different groups of heaters. The bo-
lometer was positioned in front of one of the two heaters,
and this defined the probe beam. In the set of experiments,
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phonon beams scattered at three different angles: 30, 40, and
160°.

These measurements have stimulated the need to create a
quantitative theory to compare with them, and this we
present here. We shall see that there is satisfactory agreement
between the experiment and the theory, which gives confi-
dence that the description of the interaction between phonons
of superfluid helium—based on quantized hydrodynamic
Landau Hamiltonian—works well.1

In this paper we shall be concerned with scattering by
four-phonon processes �4pps�. We will discuss the interaction
between l-phonon beams that are at large angle to each other
and also between two beams, one of which is an h-phonon
beam. In both cases three-phonon processes �3pps� are for-
bidden by the conservation laws of energy and momentum.
When the angle between the phonons is small, certainly less
than 27° and usually smaller depending on the phonon ener-
gies, and the phonon energies are less than 10 K, then 3pps
are allowed. Usually the 3pp scattering rate is so high that
the attenuation of one l-phonon beam by another l-phonon
beam is too high to measure.

Historically only 4pp interactions were thought to be sig-
nificant in liquid 4He because the phonon dispersion curve
was thought to deviate downwards from linearity. However
after it was suggested9 and then confirmed14,15 that the dis-
persion curve initially increased faster than linearly, then 3pp
scattering was analyzed and found to be important.16–18 Scat-
tering by 3pp leads to both spontaneous decay of low-energy
phonons and to strong interactions between two low-energy
phonons if the angle between them is small. As 3pp scatter-
ing does not conserve the number of phonons, it is this pro-
cess that allows thermal equilibrium to be attained. For large
angles, 3pp scattering is forbidden by conservation laws of
energy and momentum and then 4pp is the dominant scatter-
ing process.

The first analysis of 4pp interactions was by Landau and
Khalatnikov7 �see also Ref. 2� using a quantized hydrody-
namic model. All Landau and Khalatnikov calculations were
made on the assumption that in superfluid helium the disper-
sion curve is normal; i.e., it bends downwards from a linear
law. For anomalous dispersion, i.e., the dispersion curve
bending upwards from linearity, the results of Landau and
Khalatnikov7 are not applicable. The first good calculation of
4pp scattering was by Tucker and Wyatt,19 and this gave
agreement with measurements.

In the momentum and angular ranges where 3pps are al-
lowed, we have recently shown that 4pp scattering rates are
almost exactly equivalent to the 3pp rates.8 The matrix ele-
ment for 4pp, in second-order perturbation theory of small
deviations of the system from equilibrium, diverges when
there is faster than linear dispersion, so the analysis had to
overcome this problem. The 4pp rate is almost the same as
the 3pp rate in these ranges because two successive 3pp scat-
terings look like one 4pp scattering. This is an important
result as it points to the error in counting both the 3pp and
4pp contributions to the scattering rate. All 4pps that can be
rewritten as two 3pp scatterings should be ignored in calcu-
lating the total scattering rate by summing 3pp and 4pp rates.

In order to calculate the interaction rate between two pho-
non beams, it is necessary to model the momentum spectrum

in the beams as well as to calculate the matrix elements. This
is done using the anisotropic phonon distribution that was
introduced in Ref. 20. In previous work we have used an
approximate distribution function, the Bose-cone approxima-
tion. So in the sections of previous papers, for example,21

where the approximate distribution function was used, the
present work supersedes the earlier work.

In Sec. II we give the details of the derivation of the 4pp
scattering matrix elements. In Secs. III–V we consider l-l,
h-l, and h-h phonon scattering, respectively. Finally in Sec.
VI we draw our conclusions. We give the relationships be-
tween the angles for the matrix element in the Appendix.

II. FOUR-PHONON SCATTERING RATES, INCLUDING
THE MOMENTUM RANGE WHERE THREE-

PHONON PROCESSES ARE POSSIBLE

We consider four-phonon process in which there are two
phonons in the initial state and two phonons in the final state.
The conservation of energy and momentum gives

�1 + �2 = �3 + �4, p1 + p2 = p3 + p4. �1�

The kinetic equation describing the change in the distribution
function n�p1��n1, due to process �1�, can be written as

dn1

dt
= Nb�p1� − Nd�p1� . �2�

Here Nb�p1� and Nd�p1� are the rates of increasing and de-
creasing numbers of phonons with momentum p1 in unit
time due to collisions, respectively. They can be written as

Nb,d�p1� =� W�p1,p2�p3,p4���p�������nb,dd3p2d3p3d3p4.

�3�

Here W�p1 ,p2 �p3 ,p4� is the probability density for process
�1�, the � functions correspond to the conservation laws of
energy ��=�1+�2−�3−�4 and momentum p�=p1+p2−p3
−p4 and

nb = n3n4�1 + n2��1 + n1�, nd = n1n2�1 + n3��1 + n4� .

�4�

Equation �3� is integrated over p3 and p4, with the condition
that p3� p4 to avoid double counting. The distribution func-
tions that enter into Eq. �3� are determined by particular
problem under consideration. Thus, in case of l-phonon
pulse, in which the equilibrium due to three-phonon pro-
cesses with typical time �3pp is quickly attained in compari-
son with all other times of the system �t, in the zeroth ap-
proximation of small parameter �3pp /�t�1 the local-
equilibrium Bose distribution can be taken as the distribution
function of l-phonon system. For this the phonon system
must be rather dilute so that the energy uncertainty, due to
the interaction of phonons, should be much smaller than the
phonon energy ��p�. So the method, which is here devel-
oped, can be used when
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	/��p� � �3pp � �t. �5�

We note that in our system this inequality is always satisfied
as our typical times are equal to �3pp�10−9 s,18

�t�10−5 s,22 and 	 /��p��10−12 s for thermal phonons.
Using Eq. �3�, the relation for Nd can be written as

Nd = n1
d, �6�

where


d�p1� =� d3p2d3p3d3p4W�p1,p2�p3,p4���p�������n2�1

+ n3��1 + n4� . �7�

The rate 
d�p1� determines the relaxation time in the phonon
system, when Nb=0, i.e., when the creation rate of p1 is zero.

To obtain the rate 
d we must find the probability density
of four-phonon processes W�p1 ,p2 �p3 ,p4�, which enters into
Eq. �7�. The interaction of phonons in superfluid helium can
be described by the Landau Hamiltonian, which can be writ-
ten as �see, for example, Ref. 2�

Ĥph = Ĥ0 + V̂3 + V̂4. �8�

Here Ĥ0 is the Hamiltonian of noninteracting phonons, and

terms V̂3 and V̂4 describe the interaction of phonons caused
by the third and fourth orders of small deviations of the
system, from an equilibrium state of helium, respectively.

In second quantization the operator for three-particle in-

teractions V̂3 can be written as �for details see Refs. 2, 17,
and 18�

V̂3 =
1

6c

1
�8�V

�
p�,p
,p�

�p�+p
+p�,0
����
��	�2u − 1��âp�

+ â−p�

+ ��âp

+ â−p


+ ��âp�
+ â−p�

+ � + 3n�n��âp�
− â−p�

+ ��âp

+ â−p


+ ��âp�

− â−p�

+ �
 , �9�

and for four-particle interactions V̂4 we have

V̂4 =
�u − 1�2 + w

48�Vc2 �
p�,p
,p�,p�

�p�+p
+p�+p�,0
����
�����âp�

+ â−p�

+ ��âp

+ â−p


+ ��âp�
+ â−p�

+ ��âp�
+ â−p�

+ � . �10�

Here âp
+ and âp are the creation and annihilation operators,

respectively, for a phonon with momentum p, ni=
pi

pi
, �i

=��pi�, u= �
c

�c
�� =2.84 is the Grüneisen constant, w= �2

c
�2c
��2

=0.188, V is the volume of the system, and �=145 kg /m3 is
the density of He II.

The probability density, for the four-phonon process, can
be written as Refs. 19 and 21–23,

W�p1,p2�p3,p4� =
2�

	
V2�Hfi�2

1

�2�	�6 . �11�

Here Hfi is the amplitude of the four-phonon process ob-

tained in second-order perturbation theory with V̂3 and in

first-order perturbation theory with V̂4 in the standard way
�see for example Refs. 23–25� according to which

Hfi = �
Q

�p3,p4�V̂3�Q��Q�V̂3�p1,p2�
Ei − EQ

+ �p3,p4�V̂4�p1,p2� .

�12�

Here Ei is the energy of the initial state and �Q� is the inter-
mediate state with energy EQ.

There are six possible intermediate states �Q� from
Eq. �9�,

I . �p1 + p2� ,

II . �p2,p3,p1 − p3� ,

III . �p2,p4,p1 − p4� ,

IV . �p1,p3,p2 − p3� ,

V . �p1,p4,p2 − p4� ,

VI . �p1,p2,p3,p4,− p1 − p2� . �13�

If all four phonons participating in four-phonon process are l
phonons then it is possible that for some value of Q, Ei
−EQ=0 and then matrix element, in Eq. �12�, diverges. This
happens when the transition from the initial state to the final
state can be realized by two three-phonon processes. In this
case the intermediate state �Q� is not a virtual state but is a
real state. Thus, not only momentum of the states is con-
served but the energy is conserved too �Ei=EQ�. This leads
to the singularity in matrix element �12�. In this case the
perturbation theory is also applicable, but it should be modi-
fied. We note that similar divergences appear and in the other
areas of physics. For example in quantum electrodynamics
such divergences appear in the problem of resonant fluores-
cence �see, for example, Ref. 26�. To eliminate this diver-
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gence, we must take into account that the energy of a state,
which can decay, can only be determined to within an accu-
racy of �=	 /�, where � is a lifetime of the state �see, for
example, Ref. 27�. In our case the finiteness of the lifetime of
the state �Q� is due to the possibility of it decaying by 3pp.

Thus we must substitute for Ei−EQ, in the denominator of
the first term in Eq. �12�, the term Ei−EQ+ i��Q�, where ��Q�

is the energy width of the intermediate state �Q� due to it
decaying by 3pp. The lifetimes of the various intermediate
states are

I . ��1� = 
d
−1�p1 + p2� ,

II . ��13� = 
c
−1�p1 − p3� ,

III . ��14� = 
c
−1�p1 − p4� ,

IV . ��23� = 
c
−1�p2 − p3� ,

V . ��24� = 
c
−1�p2 − p4� ,

VI . ��5� = � . �14�

Here 
d�p� is the spontaneous rate of a decay of a phonon
with momentum p into two, and 
c�p� is the rate of combi-
nation of a phonon with momentum p with another phonon
by 3pp scattering. These rates were calculated by us in Ref.
18 for both isotropic and anisotropic phonon systems. For
intermediate state VI, the denominator in Eq. �12� never van-
ishes and so 	 /�5=0.

From relations �12� and �13� it follows that

Hfi =
�p1p2p3p4

8�V
M�, �15�

where

M� = M�1� + M13
�3� + M14

�3� + M23
�3� + M24

�3� + M�5� + M4

�16�

is a matrix element that consists of seven terms, six of which
correspond to six intermediate states 
Eq. �13�� and the sev-

enth is determined by V̂4 calculated by perturbation theory to
first order. We can write these terms as

M�1� =
�1+2

�1 + �2 − �1+2 + i��1� �2u − 1 + n1n2 + n1n1+2 + n2n1+2�

��2u − 1 + n3n4 + n3n3+4 + n4n3+4� , �17�

M�5� = −
�1+2

�1 + �2 + �1+2
�2u − 1 + n1n2 − n1n1+2 − n2n1+2��2u

− 1 + n3n4 − n3n3+4 − n4n3+4� , �18�

M4 = 4	�u − 1�2 + w
 , �19�

M13
�3� =

�1−3

�1 − �3 − �1−3 + i��13� �2u − 1 + n1n3 + n1n1−3

+ n3n1−3��2u − 1 + n2n4 + n2n1−3 + n4n1−3� , �20�

where ��q�=	��q�
−1 . The rest of the terms in Eq. �16�, i.e., M14

�3�,
M23

�3�, and M24
�3�, can be obtained from M13

�3� by replacing the
corresponding subscripts. The matrix elements are given in
detail in the Appendix.

III. l-l PHONON SCATTERING

Anisotropic phonon pulses, described by the equilibrium
distribution function, have phonons with momenta strongly
peaked in the direction of the pulse propagation. Neverthe-
less there are phonons with momenta in all directions. When
two phonon pulses pass through each other at an angle �,
there are always phonons in one pulse that can interact with
a phonon in the other pulse. However the scattering rate is
proportional to the number of scattering phonons with the
correct momentum, and away from the anisotropy axis—
which is along the propagation direction—this number can
be very small. This means that when � is greater than �40°
the scattering rate caused by 3pp is very low.

The angular dependence due to 3pp has been analyzed in
Refs. 18 and 20. It was shown that when ��0 the interac-
tion is strong. It reaches a peak when ��6° as at this angle
there is the highest number of suitable scattering phonons. At
larger angles the scattering decreases due to the decreasing
number of scattering phonons with suitable momentum. At
angles ��40° the interaction between the pulses is very
weak. This is similar to that found experimentally.10 How-
ever, phonons in the two pulses can also interact by 4pp, and
in this section we analyze 4pp scattering between l phonons.

The general problem of the interaction of two phonon
pulses is a difficult nonlinear problem. Therefore we restrict
ourselves to a solution of the problem of one l-phonon scat-
tering with an l-phonon pulse. Such scattering can create
another l phonon or an h phonon. These processes can be
written as

l1 + l2 ↔ l3 + l4 �type ll1� ,

l1 + l2 ↔ h3 + l4 �type ll2� . �21�

We first consider scattering by the first process. The scat-
tering rate can be found from relation �7�, but it is more
accurately determined from the kinetic equation �2� because
this takes into account creation processes as well as decay.
Hence in Eq. �2� we assume that

n1 = n1
�0� + �n1, n2 = n2

�0�, n3 = n3
�0�, n4 = n4

�0�. �22�

In Eq. �22� superscript “0” corresponds to the equilibrium
distribution function, and �n is a deviation of the distribution
function from equilibrium.

The local-equilibrium distribution function for l phonons
in a pulse can be written as18,20
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n�0��pl� = �exp��l − plu

kBT
� − 1�−1

. �23�

Here,

u = Nc�1 − �� �24�

is a drift velocity, N is the unit vector directed along the total
momentum of the phonon system, which defines the aniso-
tropy axis of a phonon system, and � is the anisotropy pa-
rameter.

In weakly anisotropic systems, the parameter � is close to
1, and when �=1 distribution �23� is isotropic. In the sys-
tems studied experimentally—see, for example, Refs. 10, 28,
and 29—the phonon pulses are strongly anisotropic phonon
systems with ��1.

The typical relaxation rate, 
ll1, of one l phonon scattered
by a pulse of l phonons by ll1 processes, in the relaxation
time approximation as in kinetic theory, can be written as


ll1�p1� = −
1

�n1

d�n1

dt
. �25�

From Eqs. �2�–�4�, �22�, and �25� we find that


ll1�p1� =
1

1 + n1
�0��

p2�pc

d3p2�p3low�p3

p3�p3up

d3p3�
p4�p3

d3p4W�p1,p2�p3,p4���p�������n2
�0��1 + n3

�0���1 + n4
�0�� , �26�

where

p3low =
p1 + p2

2
, p3up = min�p1 + p2,pc� . �27�

This rate differs from Eq. �7� in which n2=n2
�0�, n3=n3

�0�,
and n4=n4

�0� by the factor �1+n1
�0��. This factor takes into

account the creation of phonons that reach the detector.
Hence Eq. �26� is more accurate than Eq. �7�. However the
factor �1+n1

�0�� is close to 1 for nearly all values of momen-
tum p1, except the smallest ones. So both rates 
Eqs. �7� and
�26�� are practically the same.

In the momentum range where 3pp scattering is allowed,
four-phonon process can be represented as two consecutive
three-phonon processes. In these processes, the denominators
of the matrix elements, in Eq. �12�, are resonant. At small
angles we can replace terms 
�Ei−EQ�2+ ��Q

2 ��−1 by the delta
function ���Ei−EQ� /�Q. As �Q is due to 3pp scattering, it is
proportional to the 3pp matrix element. So in essence, the
second-order matrix element in Eq. �12� has a numerator
with two 3pp matrix elements and the denominator has one
3pp matrix element, so after cancellation the second-order
matrix element is equal to one 3pp matrix element.

After a detailed analysis,8 involving integrating the five
resonant matrix elements in Eq. �16� and then summing
them, we find that rate of four-phonon processes is equal to
the rate of three-phonon processes for the case ll1 when the
angles are small. So the scattering process ll1 at small angles
can be represented as two consecutive three-phonon pro-
cesses, with one of them canceling with � in the denomina-
tor. Also we see that the four-phonon process goes through
an intermediate state that is real and not virtual.

We define an “exclusive” four-phonon processes with a
rate 
exc, which excludes the 4pp scattering that can be rep-
resented by 3pp scattering. So 
ll1 for all angles can be writ-
ten as


ll1 = 
3pp + 
exc. �28�

At larger angles there is only the “exclusive” 4pp type ll1
scattering.

Next we consider the scattering caused by “exclusive”
four-phonon processes. Three-phonon processes were stud-
ied by us in Refs. 18 and 20. In order to find 
exc we integrate
over the azimuthal angles of the third- and fourth-phonon �3,
�4, and variables p4 and �4 in Eq. �26�, with the help of the
� functions of energy and momentum, in a way similar to
Refs. 22 and 23. Here and below it will be convenient to use
variables �ij =1−cos �ij instead of the angles �ij between
phonons with momenta pi and p j. If � contains only one
subscript then the corresponding angle is between the mo-
mentum and the anisotropy axis of the system.

In the integration, we exclude the range of variable �2
where the angle �12, between momenta p1 and p2, is less than
45°. We note that though the maximum angle between mo-
menta of phonons, which can participate in a three-phonon
process, as dictated by the conservation laws, is equal to 27°,
we omit the integration range where �12�45°. This is be-
cause there are scatterings in which a phonon, with momen-
tum p1, decays into two in the first 3pp, and in the second
3pp one of these phonons combines with p2. Then there can
be angles up to 45° between phonons with momenta p1 and
p2. So this range of integration excludes the four-phonon
process that can be represented as two consecutive three-
phonon processes. Consequently, the contribution of the re-
maining range of integration over angles gives the rate 
exc
for “exclusive” four-phonon processes.

This procedure underestimates the exclusive 4pp because
there can be exclusive 4pp at angles less than 45°. This is not
a problem when the angle �1 between the phonon with mo-
mentum p1 and anisotropy axis N of a system is relatively
large ��1�

�
2 � as then there are practically no phonons in the

omitted integration range. This is due to the smallness of n2
�0�

at these angles.
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However for small angles �1, as most of the scattering
phonons in the pulse have a small angle to the anisotropy
axis, then the omitted integration range would exclude prac-
tically all the phonons in the pulse; this can lead to a de-
crease in the rate of “exclusive” four-phonon processes by
several orders of magnitude compared with the true 4pp rate.
Therefore such a calculation of the rate of “exclusive” four-
phonon processes can only be justified for sufficiently high
values of the angle �1; i.e., �1�90°.

After integration with the help of the delta functions, fur-
ther analytic integration of Eq. �26� cannot be precisely made
because of the complexity of the integrand. The results of a
numerical calculation of the rate 
exc for two pulses with
parameters T1=0.058 K, �1=0.06 and T2=0.041 K, �2
=0.02 are shown in Fig. 1 for large angles ��1�90°�. The
parameters T2 and �2 correspond to the typical parameters of
an l-phonon pulse that is injected into helium by a heater,
while parameters T1 and �1 correspond to an l-phonon pulse
that initially had parameters T2 and �2 but has lost energy
due to the creation of h phonons. We note that it would be
wrong to state that the pulse was cooled down to temperature
T1 and anisotropy parameter �1 because, as it was shown in
Refs. 22 and 23, the temperature of l-phonon pulse due to the
creation of h phonons increases and does not decrease. How-
ever, the value of the anisotropy parameter increases too, so
the total energy of l-phonon pulse decreases, as it must.

The value of the momentum of the relaxing phonon p1 is
chosen to equal the average momentum of phonons in a
pulse. For the first pulse, the average momentum of phonons
in a pulse is given by c�p� /kB=1.28 K and for second pulse
by 1.61 K. Although the qualitative behavior of the rates in
both cases is similar, there is nevertheless a strong quantita-
tive difference between the rates at large angles: at 180°, the
ratio is �12; while at angles about 90°, the ratio is only 2.
This difference is due to two factors: first the energy density

in the second pulse is twice as large as the first, and second
the angular and momentum dependences of the integrand of
Eq. �26� are different.

Next we consider the scattering caused by process ll2 
see
Eq. �21��. As the third phonon in this process is an h phonon
and the second and the fourth phonons are l phonons, then
n2=n2

�0�, n3=0, and n4=n4
�0�. So Nb=0 in this case and the

relaxation rate can be obtained from Eq. �7� by substituting
the following distribution functions:


ll2�p1� = �p2�pc−p1

p2�pc

d3p2� p3�pc

p3�p3up

d3p3�
p4�pc

d3p4W�p1,p2�p3,p4���p�������n2
�0��1 + n4

�0�� , �29�

where p3up=min�p1+ p2 , pmax� and pmax is the maximum mo-
mentum of a phonon. For the calculations we take p̃max

=20 K. We note that phonons with momentum more than
14 K do not make a contribution to any of the rates calcu-
lated in this paper. Therefore for all values of p̃max�14 K
the value of the rate is the same.

The integration involving the � functions in Eq. �29� can
be made analytically. Further integration can only be pre-
cisely made numerically. The results of a numerical calcula-
tion of the rate 
ll2 are shown in Fig. 2.

In Fig. 2 we see that the rate increases monotonically with
increasing momentum and monotonically decreases with in-
creasing angle. The physical reasons are that the higher the
momentum of the first phonon, the higher is the probability

of h-phonon creation, and the greater the angle between the
two interacting phonons, the smaller is the probability of
h-phonon creation.

Comparison of 
exc with 
ll2, when �1�90°, gives the
inequality


exc�p1,�1,T,�� � 
ll2�p1,�1,T,�� . �30�

Inequality �30� shows that the interaction between l-phonon
pulses, at large angles, is mainly due to process ll1 rather
than ll2.

From the calculation of the rates, we can calculate the
attenuation coefficient of an l phonon in an l-phonon pulse.
The attenuation A is given by

FIG. 1. The angular dependence of the 4pp rate 
exc, for the
process �l1+ l2↔ l3+ l4�, for different values of the momentum p1 of
the probe phonon, in different scattering pulses. This 4pp rate ex-
cludes 4pp scattering, which can be represented by two sequential
3pp. The momentum of the probe l phonon is taken to be the aver-
age phonon momentum �p� in the probe pulse. The probe and scat-
tering pulses are taken to be identical. Curve 1 corresponds to the
pulse parameters T1=0.058 K, �1=0.06, and cp1 /kB=c�p� /kB

=1.28 K, the scattering pulse at the scattering point, which has lost
energy by h-phonon creation; and curve 2 corresponds to T2

=0.041 K, �2=0.02, and cp1 /kB=c�p� /kB=1.61 K, the initial scat-
tering pulse, which has not lost energy by the time it reaches the
scattering point.
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All = 1 − exp�− tcross
exc� . �31�

where tcross is the time of l-phonon passage through the
l-phonon pulse; it is given by the relation �see Ref. 20�

tcross =
tp

1 − cos �
�32�

in which � is the angle between the pulses and tp is duration
of a current pulse in a heater.

The attenuation coefficient All is calculated for the typical
experimental value of pulse duration tp=100 ns and is
shown in Fig. 3. The attenuation coefficient was calculated
from Eqs. �31� and �32� and the numerical calculation of the
rate 
exc �see Fig. 1�. In calculations, the angle � between
interacting pulses is considered to be equal to �1 and the
momentum p1 of the scattered phonon is taken to be equal to
the average value of the phonon momenta in the probe pulse.

From Fig. 3 it can be seen that the interaction between
l-phonon pulses that have relatively large angles to each
other, due to four-phonon processes, is very small and will be
hard to detect experimentally. This is in agreement with the
results of experiments in which the interaction between
l-phonon pulses was observed only when the angle between
them was �30°.10 At these small angles there is a very
strong interaction due to 3pp.

We note that if we create a pulse with duration equal to
1000 ns the attenuation coefficient will increase ten times in
comparison with that shown in Fig. 3. The attenuation coef-
ficient at the interaction point of two pulses with T2
=0.041 K and �2=0.02 moving head-on will be about 1%,
which is at the present limit of detection. However for a
scattering pulse with T1=0.058 K and �1=0.06, which cor-

respond to an l-phonon pulse that practically does not create
h phonons, to get an attenuation equal to 1%, with an angle
between pulses equal to 150°, would need the duration of a
pulse to be 10−5 s. This is very long; it is a quarter of the
l-phonon flight time for a path length of 10 mm. We con-
clude that it will be difficult to observe the attenuation of a
probe of l phonons by a scattering pulse of l phonons due to
4pp, which exclude equivalent 3pp.

IV. h-l PHONON SCATTERING

In this section we consider the problem of the interaction
between one h phonon and a pulse of l phonons. The attenu-
ation of a probe h-phonon pulse by an l-phonon pulse has
been measured.10 There are three types of scattering with 0,
1, or 2 h phonons being created,

h1 + l2 ↔ l3 + l4 �type hl1� ,

h1 + l2 ↔ h3 + l4 �type hl2� ,

h1 + l2 ↔ h3 + h4 �type hl3� . �33�

We begin with the process hl1, i.e., the scattering of an h
phonon by an l-phonon pulse with the creation of two l
phonons. The scattering rate 
hl1 is given by Eq. �7�. The
distribution functions of l phonons in Eq. �7� �n2, n3, and n4�
are the equilibrium ones 
see Eq. �23�� as l phonons in a
pulse quickly come to equilibrium by 3pp scattering. So the
rate 
hl1 can be written as


hl1�p1� = �
p2�2pc−p1

d3p2�p3low�p3

p3�pc

d3p3�
p4�p3

d3p4W�p1,p2�p3,p4���p�������n2
�0��1 + n3

�0���1 + n4
�0�� , �34�

FIG. 2. The angular dependence of the rate 
ll2, for the process
ll2, �l1+ l2↔h3+ l4�, for different values of the momentum of the
probe phonon. Curves 1–10 correspond to values of cp1 /kB

=1,2 , . . . ,10 K, respectively. Calculations are for a scattering
pulse with parameters T=0.058 K and �=0.06.

FIG. 3. The angular dependence of the attenuation coefficient
All of a probe l-phonon pulse scattered a second l-phonon pulse,
using the scattering rate 
exc. The momentum of the probe l phonon
is taken to be the average phonon momentum �p� in the probe pulse.
The probe and scattering pulses are taken to be identical. The angle
between them is �. Curve 1 corresponds to pulse parameters T1

=0.058 K, �1=0.06, and cp1 /kB=c�p� /kB=1.28 K; curve 2 corre-
sponds to T2=0.041 K, �2=0.02, and cp1 /kB=c�p� /kB=1.61 K.
The calculations were made for pulses with pulse duration tp

=100 ns.
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where p3low is defined by Eq. �27�.
According to Eq. �6� the relation for Nd can be written as

Nd = n1
hl1. �35�

At small angles between the pulses, it is possible that an h
phonon is created in the scattering pulse of l phonons, and
this h phonon will reach the detector. This would look like an
increase in the h-phonon probe signal. We now consider the
rate of h-phonon creation, Nb, in the l-phonon pulse and the
size of such a signal.

Taking into account the equality

n3
�0�n4

�0��1 + n2
�0�� = e−��1−p1u�/�kBT�n2

�0��1 + n3
�0���1 + n4

�0�� ,

�36�

which follows from Eq. �23� and the conservation laws, we
derive

Nb = e−��1−p1u�/�kBT��1 + n1�
hl1. �37�

In short pulses, which were used in experiments, any cre-
ated h phonons are left behind by the l phonons, and the
number of phonons with p1 in the scattering pulse, n1, is
much less than the unity. Therefore for short pulses �we only
consider short scattering pulses in this section� we have the
relation

Nb
�sh� = e−��1−p1u�/�kBT�
hl1. �38�

At small angles between the anisotropy axis and the mo-
mentum, the exponential term in Eq. �38� is about unity. So
Nb

�sh��Nd and the first term on the right-hand part of Eq. �2�
is much greater than the second, which can be neglected in
this case. Thus the kinetic equation becomes

dn1

dt
= Nb

�sh�. �39�

In this case, hl1, we might expect an increase in the signal
and not an attenuation. However by the time the scattering
pulse has reached the intersection point with the probe pulse,
it will have such a low energy that is has almost stopped
creating h phonons. When this happens we do not expect any
change in the probe h-phonon signal. This is in good agree-
ment with experiment10 where no attenuation is seen at
angles 30 and 40°.

The situation is quite different at large angles between the
momentum of the h phonon and the anisotropy axis of the
l-phonon pulse; i.e., �1�90°. In this case the exponential
factor in Nb becomes very small and the kinetic equation �2�
can be written as

dn1

dt
= − Nd = − n1
hl1. �40�

So we have a process for h-phonon scattering in an

anisotropic l-phonon system. We see that the scattering rate
is exactly equal to 
hl1.

The momentum and angular dependences of the rate 
hl1

were obtained by us in Refs. 22 and 23, where the physical
reasons for these dependences have also been analyzed. The
scattering rate 
hl1 of h phonon with momentum cp1 /kB

=10 K in an l-phonon pulse with parameters T1=0.058 K
and �1=0.06 and T2=0.041 K and �2=0.02 was calculated
from Eq. �34� and is shown in Fig. 4. One can see that an
l-phonon pulse with T1=0.058 K and �1=0.06 has rates that
are �2 times smaller than for a pulse with T2=0.041 K and
�2=0.02. We note that the initial values of the parameters of
T2=0.041 K and �2=0.02 roughly correspond to a heater
power of 25 mW.

Although the rate 
hl1 only changes �2 times between the
two pulses, the change in the parameters of the pulse has a
large influence on h-phonon creation. It was shown by us in
Refs. 22 and 23 that the l-phonon pulse, with parameters
T2=0.041 K and �2=0.02, intensively creates h phonons,
but in a pulse with T1=0.058 K and �1=0.06 there is prac-
tically no h-phonon creation. This difference can be ex-
plained by the fact that Eq. �39� not only depends on the rate

hl1 in the pulse, which weakly changes with the pulse pa-
rameters, but also depends on the exponential factor on the
right-hand side of Eq. �38�. This factor changes approxi-
mately 170 times between the two sets of pulse parameters.
Thus, Nb

�sh� changes �340 times; this means that there is
practically no h-phonon creation in a pulse with T1

=0.058 K and �1=0.06. The distribution function for the l
phonons in the pulse, which enters into the rate 
hl1, only
changes �3 times between the pulses. So this leads to the
weak change in the rate 
hl1.

We now consider the rate due to the second process 
hl2.
This can be derived from Eq. �7�, where n3=0 as there are no
h phonons in the l-phonon pulse and n2=n2

�0� and n4=n4
�0� are

the distribution functions for l phonons in the pulse

FIG. 4. The angular dependence of the rate 
hl1 of process hl1,
�h1+ l2↔ l3+ l4�, for different values of the scattering pulse. The
momentum of the probe phonon is taken as cp1 /kB=10 K. Curve 1
corresponds to the scattering pulse parameters T1=0.058 K and
�1=0.06, the scattering pulse at the scattering point that has lost
energy by h-phonon creation, and curve 2 corresponds to T2

=0.041 K and �2=0.02, the initial scattering pulse that has not lost
energy by the time it reaches the scattering point.
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hl2�p1� = �
p2�pc

d3p2�p3low�p3

p3�p3up

d3p3�
p4�pc

d3p4W�p1,p2�p3,p4���p�������n2
�0��1 + n4

�0�� , �41�

where p3low=max�pc , p1+ p2− pc� and p3up=min�p1+ p2 , pmax�.
The results of calculation of the rate 
hl2 from Eq. �41� are shown in Fig. 6. At once we see that this process will not lead

to an observable attenuation of a pulse as it does not lead to any significant exchange of energy between l- and h-phonon
subsystems.

We note that the rate 
hl1�p̃1=10 K,�1� is the same as 
ll2�p̃1=10 K,�1� �see Figs. 2 and 5, respectively� as at p̃1
=10 K it is the same relaxation rate.

Relation �41� for the rate 
hl2 is formally similar to Eq. �34� for the rate 
hl1 although the numerical values and dependences
of these rates appear quite different. The different momentum and angular dependences of the rates 
hl1 and 
hl2 are determined
first by the different limits of integration on p2 and p3 and second by the probability densities W, which behave differently as
a function of momentum.

The rate of the third process 
hl3 can be derived from Eq. �7�, with n3=0 and n4=0, as there are no h phonons in l-phonon
pulse, and n2=n2

�0� is the distribution functions of l phonons in the scattering pulse


hl3�p1� = �p2�2pc−p1

p2�pc

d3p2�p3�p3low

p3�p3up

d3p3�p4�p3

p4�pc

d3p4W�p1,p2�p3,p4���p�������n2
�0�, �42�

where p3low is defined by Eq. �27� and p3up= p1+ p2− pc.
The results of the calculation of the rate 
hl3 from Eq. �42�

are shown in Fig. 5. As expected, the rate of type hl3 process
is less than the rate of the second type 
hl2 because the prob-
ability of creating two h phonons is less than the probability
of creating one h phonon and one l phonon. The momentum
and angular dependences of the rate 
hl3 are mainly defined
by the angular and momentum dependences of the probabil-
ity density and the distribution functions.

The rates of these h-l processes have been calculated in
the Bose-cone approximation for �1=0 in Ref. 21. The cal-
culated rates for the hl1 scattering are in good agreement.
The rates for the other two processes differ from the results
obtained here. These differences are due first to the fact that
the approximate matrix element was used in Ref. 21 and
second that the approximate Bose-cone distribution function
was used.

From the rates calculated here we see that the interaction
between h- and l-phonon pulses is mainly due to the hl1
process. The attenuation coefficient of h phonons in l-phonon
pulse at large values of the angle can be written as

A = 1 − exp�− tcross
hl1� , �43�

where tcross is the crossing time of an h-phonon probe pulse
through the l-phonon scattering pulse, which is given by

compare with Eq. �32��

tcross =
ctp

c − vc cos �
. �44�

Here � is the angle between pulses; vc=189 m /s is a group
velocity of h phonon with energy equal to 10 K.

For �=160° we calculate the attenuation coefficient from
Eqs. �43� and �44� and from the calculated rate 
hl1. The
angle � between the interacting pulses is taken to be equal to
the angle �1. The momentum p1 of the scattered h phonon is
taken to be equal to the average momentum of phonons in
the h-phonon pulse. The rate for this case is equal to 
1
=1.15�106 s−1, tcross=5.7�10−7 s, and tp=1000 ns. This
gives an attenuation coefficient of A=48%. This is in reason-
able agreement with experiment in which 30% attenuation
was observed at �=160°. The calculated attenuation is a
little higher than that measured, but in the calculation we
have not counted phonons that are created in the scattering
process. Some of these scattered phonons will reach the de-
tector. For shorter pulse �tp=100 ns� we calculate A=6.4%,
while in the experiment 3% attenuation is observed.

V. h-h PHONON SCATTERING

As in the previous sections we model the interaction be-
tween two h-phonon pulses by considering one h-phonon
scattering in a cloud of h phonons. The scattering can happen
in two ways,

h1 + h2 ↔ h3 + l4 �type hh1� ,

h1 + h2 ↔ h3 + h4 �type hh2� . �45�

The rate for the first of the processes in expression �45�
can be obtained by substituting n2=n2h

�0�, n3=n3h
�0�, and n4=0

in Eq. �7�,
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hh1�p1� = � pc�p2

p2�p2up

d3p2�p3low�p3

p3�p3up

d3p3�
p4�pc

d3p4W�p1,p2�p3,p4���p�������n2h
�0��1 + n3h

�0�� , �46�

where p3low, p3up, and p2up are defined by

p3low = min�p1 + p2 − pc,pmax� ,

p3up = min�p1 + p2,pmax� ,

p2up = pc + pmax − p1. �47�

In Eq. �46� nih
�0� is the distribution function for h phonons in

the scattering pulse of h phonons. The integration, in expres-
sion �46�, using the � functions can be made in a similar way
to the previous sections.

In order to numerically integrate Eq. �46� we need the
distribution function for the h phonons. The distribution
function for h phonons in a pulse, which was created by a
pulse of l phonons, was derived in the Bose-cone approxi-
mation in Ref. 30. It can be written as

nh
�0��p,�,z,t� =

ctpA1

c − vp

e−A2/T�tb�

e��p�/kBT�tb� − 1
e−A3
c�p−pc�/kB���t

− tb���tb����p
�h� − �� . �48�

where A1=1.228�109 s−1, A2=3.188 K, A3=1.65 K−1, vp
is the group velocity of h phonons with momentum p, tp is a
duration of the current pulse in the heater that is taken as 100
ns, and �p

�h�=1−cos �p
�h�, where �p

�h� is the typical half-angle
of the cone occupied by the h phonons in momentum space,
which is 4° �Refs. 11, 22, 23, and 31�,

tb =
z − vpt

c − vp
, �49�

and the function T�tb� is defined by the relation


b1�T�
T4 e−�c/kBT =


b1�T0�
T0

4 e−�c/kBT0�1 +
tb

�S
�−1

. �50�

In Eq. �50�, T0 is the initial temperature of the l-phonon pulse
that is taken to be 1 K, �c /kB=10 K,

�S =
4�4kB

3T0
3vce

�c/kBT0

15c�c
3
b1�T0�

T0

�c/kB + A2
, �51�

and


b1�T� = A1e−A2/T�1 + A3
c

vc
T�−1

. �52�

The h phonons have momenta close to pc in such a pulse.
Distribution function �48� enables us to calculate the den-

sity of high-energy phonons, created by a pulse of low-
energy phonons, at any point z and at any time t. To calculate
the rate of interaction, we need the distribution function of h
phonons at the point where the h-phonon pulses intersect.
This point determines the time of their intersection. As the
distance between the heater, which creates the scattering
pulse, and the point of intersection in the experiments, was
equal to 10 mm, so z=10 mm. The time was chosen so that
the energy density of h phonons at point z was maximized.
As it was shown in Ref. 30 that this time can be found from
the relation t=z /vc�52.9 �s.

The results of the numerical calculation of the rate 
hh1
from Eq. �46� with the distribution function of h phonons
given by Eq. �48� at z=10 mm and t=52.9 �s are shown in
Fig. 7. The angular and momentum dependences of the rate

hh1 are determined by a probability density W that enters
into the integrand and by the distribution function of h
phonons n2h

�0�.
Now we consider the second process, hh2, from Eq. �45�.

The scattering rate 
hh2 from Eq. �7� is equal to


hh2�p1� = � p2�pc

p2�pmax

d3p2�p3�p3low

p3�p3up

d3p3�p4�pc

p4�p3

d3p4W�p1,p2�p3,p4���p�������n2h
�0��1 + n3h

�0���1 + n4h
�0�� . �53�

Here p3low is defined by Eq. �27� and p3up=min�p1
+ p2 , pmax�. We note that for this case there is also a creation
process that will make real relaxation rate a little smaller
compared to that from Eq. �53�. The results of the numerical
calculation of the rate 
hh2 from Eq. �53� are shown in Fig. 8.

As h phonons in a pulse have momenta close to pc, the
process hh1 appears much more effective than process hh2

for h-phonon pulses interacting at any angle between them.
We conclude that h-phonon pulses interact mainly due to the
process hh1.

Using our calculation of the rates, we estimate the attenu-
ation of the probe h-phonon signal scattered by an h-phonon
pulse, through the hh1 process. It can be written as
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A = 1 − exp�− tcross
hl1� , �54�

where tcross is time for the probe h phonon to cross the scat-
tering h-phonon pulse,10

tcross =
th

sin �
. �55�

Here � is the angle between the pulses, and th=2.25
�10−6 s is the time corresponding to a spatial half-width of
h-phonon signal, which can be estimated from Ref. 30.

The attenuation coefficient, calculated from Eqs. �54� and
�55� for �=30°, and the results of numerical calculation of
the rate 
hh1 are shown in Fig. 7. The angle � between inter-
acting pulses is taken to be equal to the angle �1, and the
momentum p1, of the probe phonon, is taken as equal to the
average value of momentum of phonons in the probe pulse,
cp1 /kB=c�p� /kB=10 K. The rate for this case is equal
to 
hh1�cp1 /kB=10 K,�1=30°�=3.02�104 s−1, tcross=4.5
�10−6 s and the attenuation coefficient is A=12.7%. This is
in reasonable agreement with experiment where 4.5% attenu-
ation is observed at �=30°. The calculated rate is overesti-
mated as first that the some of the scattered phonons will
reach the detector and second we that have assumed that the
distribution function of h phonons is constant over the vol-
ume where the pulses intersect. The actual spatial inhomoge-
neity of distribution function will decrease the attenuation.
Also if the initial temperature T0 of the initial l-phonon pulse
is less than 1 K, as is found in some experiments,32 the
density of h phonons in the scattering pulse is smaller, and
the calculated attenuation will be smaller.

VI. CONCLUSION

The rate of four-phonon scattering in liquid helium, for
phonons of all momenta, is found from the kinetic equation

Eq. �7��. When three-phonon processes are allowed, particu-
lar care must be taken in calculating the 4pp rate. For the
range of momenta where 3pp are allowed, the 4pp matrix
elements 
Eq. �16�� have resonances when the angle between
the two interacting phonon momenta is small. This is be-
cause the denominators of the matrix element can be zero
when three-phonon processes are allowed, and the interme-
diate states, in second-order perturbation theory, are real
rather than virtual. This problem is resolved by realizing that
the intermediate states have finite lifetimes due to 3pp scat-
tering so their energies are complex rather than real. This
replaces the infinities with delta functions, and the 4pp scat-
tering rates can then be calculated.

In the angular range, where three-phonon processes are
permitted, the rate of four-phonon processes is very close to
the rate of three-phonon processes. This is because the 4pp is
equivalent to two sequential 3pps, so the 3pp and 4pp rates
should not be added together. In this angular and momentum
range, the 4pp scattering rates are very high because they are
essentially 3pp rates. At larger angles, 3pps are not allowed
as energy and momentum cannot be conserved, and the 4pp
cannot be considered as two 3pps. The 4pp scattering rate is
then relatively very low. We call this the 4pp exclusive rate
at it excludes the equivalent 3pp scattering, and it is given in
Eqs. �26� and �28�.

The problem of the interaction between two l-phonon
pulses, due to exclusive four-phonon processes, is solved for
large angles between pulses. It is shown that there are two
processes, ll1 and ll2, for this interaction 
see Eq. �21��. The
rates of these processes are calculated and shown in Figs. 1
and 2. The process ll1, where two l phonons are created, is
much more effective than process ll2 where one l phonon
and one h phonon are created.

The attenuation coefficient of a probe l-phonon pulse due
to its interaction with a scattering l-phonon pulse is calcu-
lated and is shown in Fig. 3. From the results of the calcu-
lated attenuation coefficient we see that there should be no
experimentally observed attenuation due to the interaction of
l-phonon pulses at large angles, certainly for ��90° and
probably for smaller angles down to ��45°. This is in
agreement with the experimental results in Ref. 10 for �
=40° in which no attenuation was detected. The measured
attenuation at �=30° is essentially due to 3pp scattering �see
Refs. 17 and 18�, and as the angle � decreases below 30°, the
attenuation rapidly increases and becomes immeasurably
large.

FIG. 5. The angular dependences of the rate 
hl2 for type hl2
process, �h1+ l2↔h3+ l4�, for different values of the momentum of
the probe h phonon. Curves 1–5 correspond to values of cp1 /kB

=10, 11, 12, 13, and 14 K, respectively. Calculations were made for
a scattering l-phonon pulse with parameters T=0.058 K and �
=0.06.

FIG. 6. The angular dependence of the rate 
hl3 for type hl3
process, �h1+ l2↔h3+h4�, for different values of the probe
h-phonon momentum. Curves 1–5 correspond to values of cp1 /kB

=10, 11, 12, 13, and 14 K, respectively. Calculations were made for
a scattering l-phonon pulse with parameters T=0.058 K and �
=0.06.
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The problem of interactions between h- and l-phonon
pulses is then considered. It is shown that this relaxation can
be caused by three different processes 
Eq. �33��. The rates
all of three processes are found �see Figs. 4–6�. We find that
generally the process h+ l→ l+ l is stronger than h+ l→ l+h,
which is stronger than h+ l→h+h. This is due to the extra
energy required to create an h phonon rather than an l pho-
non. At large angles between the pulses, the interaction be-
tween h- and l-phonon pulses is due only to the first �hl1�
process. The calculated attenuation coefficient of a probe
h-phonon pulse scattered by an l-phonon pulse is 48%,
which is in good agreement with experimental attenuation of
30% �Ref. 10� at �=160°.

The interaction between two h-phonon pulses is then con-
sidered. It is shown that there are two processes for this
interaction 
see Eq. �45��. We find that generally the process
h+h→h+ l is stronger than h+h→h+h. The rates for both
processes are calculated �see Figs. 7 and 8�. The interaction
between two h-phonon pulses is mainly due to the first pro-
cess hh1 rather than the second hh2. The calculated attenu-
ation coefficient of a probe h-phonon pulse scattered by an
h-phonon pulse at �=30° is 12.7%. This is reasonable agree-
ment with experimental attenuation of 4.5% �Ref. 10� as
there are no adjustable constants. The reasons for the differ-
ence are discussed.

In conclusion we have shown that the 4pp scattering rates
in liquid 4He, calculated from first principles, give attenua-
tion coefficients that are in reasonable agreement with the
directly measured scattering rates. We conclude that we can
satisfactorily calculate all the main phonon-phonon scatter-
ing processes in liquid He II, 3pp in Refs. 17 and 18, and 4pp
in this paper.
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APPENDIX: RELATIONSHIPS BETWEEN THE ANGLES
FOR THE MATRIX ELEMENT

Having expanded the dot products in Eqs. �17�–�20� and
taking conservation laws of energy and momentum �1� into
account, we have

M�1� =
�1+2

�1+�2−�1+2+i��1� 
2u − �12 +
p1+p2

p1+2
�2 − �12��
2u − �34

+
p3+p4

p1+2
�2 − �34�� , �A1�

M�5� = −
�1+2

�1+�2+�1+2

2u − �12 −

p1+p2

p1+2
�2 − �12��
2u − �34 −

p3+p4

p1+2
�2

− �34�� , �A2�

M13
�3� =

�1−3

�1−�3−�1−3+i��13� 
2u − �13 +
p1−p3

p1−3
�2 − �13��
2u − �24

+
p4−p2

p1−3
�2 − �24�� , �A3�

M24
�3� =

�2−4

�2−�4+�2−4+i��24� 
2u − �13 +
p3−p1

p1−3
�2 − �13��
2u − �24

+
p2−p4

p1−3
�2 − �24�� , �A4�

M14
�3� =

�1−4

�1−�4−�1−4+i��14� 
2u − �14 +
p1−p4

p1−4
�2 − �14��
2u − �23

+
p3−p2

p1−4
�2 − �23�� , �A5�

M23
�3� =

�2−3

�2−�3+�2−3+i��23� 
2u − �14 +
p4−p1

p1−4
�2 − �14��
2u − �23

+
p2−p3

p1−4
�2 − �23�� . �A6�

Here variables �ij are given by relation �ij =1−cos �ij, where
�ij is the angle between phonons with momenta pi and p j,
�i�j =��pi�j�, and

pi+j = ��pi + pj�2 − 2pipj�ij, pi−j = ��pi − pj�2 + 2pipj�ij .

�A7�

FIG. 7. The angular dependence of the rate 
hh1 for type hh1
process, �h1+h2↔h3+ l4�, for different values of the momentum of
the probe h phonon. Curves 1–5 correspond to values of cp1 /kB

=10, 11, 12, 13, and 14 K accordingly. The initial temperature T0 of
l-phonon pulse, which has created the scattering h-phonon pulses, is
equal to 1 K in the Bose-cone approximation; the solid angle occu-
pied by the scattering h-phonon pulse in momentum space is �p

�h�

=1.53�10−2 sr.

FIG. 8. The angular dependence of the rate 
hh2 for type hh2
process, �h1+h2↔h3+h4�, for different values of momentum of the
probe h phonon. Curves 1–5 correspond to the values of cp1 /kB

=10, 11, 12, 13, and 14 K, accordingly. The initial temperature T0

of l-phonon pulse that has created h-phonon pulse is equal to 1 K in
the Bose-cone approximation; the solid angle occupied by the scat-
tering h-phonon pulse in momentum space is �p

�h�=1.53·10−2 sr.
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From the energy and momentum conservation laws, the
following relations between the angles can be obtained:

�34 =
�p3 + p4�2 − �p1 + p2�2 + 2p1p2�12

2p3p4
, �A8�

�23 =
�p1 − p4�2 − �p2 − p3�2 + 2p1p4�14

2p2p3
, �A9�

�24 =
�p1 − p3�2 − �p2 − p4�2 + 2p1p3�13

2p2p4
, �A10�

where

�1i = �1 + �i − �1�i − �2�1 − �1
2�2�i − �i

2cos��i − �1� .

�A11�

In Eq. �A11�, the angles �i are the azimuth angles of phonons
with momentum pi relative to the x axis, which is perpen-
dicular to the anisotropy axis, and �i=1−cos �i, where �i is
the angle between the momentum pi and the anisotropy axis
of the system.
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